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The rapid growth of online social network platforms enabled many studies to leverage social media data for community-based problem
solving. Because many data-intensive studies tend to rely on one information source, using a big social media dataset for predicting
and understanding community characteristics could lead to biased interpretations. In other words, overlooking the fragmented nature
of data across multiple platforms might result in fairness and accountability issues in understanding the roles of algorithm-powered
systems in local communities. To illuminate the importance of considering multiple data sources in community-based data analytics,
we disambiguate local event data from three different event-based social network platforms (EBSNs) for three major U.S. cities over 20
months. Through machine learning-based disambiguation of local events, we provide baseline characteristics of local event data from
EBSNs. Based on the descriptive analyses of EBSN data in different socio-temporal contexts, this paper discusses the data fragmentation
issue across EBSN platforms as an important factor in the fairness and accountability of community-based data analytics.
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1 INTRODUCTION

Data collected from online social network platforms provides new opportunities for researchers and practitioners to
understand human and organizational behaviors with increase statistical power. Among them, data-driven approaches
to solving local community issues often analyze a big dataset from a single online data source such as either Twitter,
Facebook, or Meetup [3, 14]. While the volume of data from a single data source is large enough for providing meaningful
analysis results, their purposes could be different from one another.

One the one hand, using data from a single source could be reasonable when the goal of the analysis is to develop
novel methods and improve the performance of a certain computational task. For example, data-driven research on
event recommender systems focuses on improving the performance of the recommendation algorithm within the target
system rather than its community-level impact [21]. In this case, maintaining the data quality consistent by focusing on
the target data source would be a reasonable option for assessing the performance of the suggested method. On the other
hand, community-based applications also make use of geo-tagged data for predicting, understanding, and identifying
community dynamics. For example, Foursquare data was used to identify the dynamically-changing neighborhood
boundaries by modeling the social structure of places based on people’s check-in patterns [5]. Geo-tagged Flickr data
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was collected in another study to model cultural capital and see whether it is associated with economic development in
cities [11].

While single-source studies provide novel approaches to understanding or predicting community dynamics based on
a large-scale social media data, they often do not faithfully represent a diverse community because of biases in implicit
samples comprised of the platform user population [27]. In other words, using one or two social media platforms for
data collection would result in using only part of the available data in the local community. Oftentimes, such data might
be biased in their users and contents when used for understanding their communities. For example, any one of the local
event information sources may contain up to 20% of the entire information available in the community [18].

This suggests that using data from more than one data source would be a reasonable practice for data-driven,
community-based problem-solving for (1) reducing platform-specific sampling bias and (2) increasing the statistical
power. While issues of data quality and comprehensiveness exist in any application of data science, in community-
oriented application, they take on a greater importance because of the possibility for these applications and studies to
unintentionally magnify inequality and existing biases [15]. Hence, community-based researchers have an obligation to
be particular vigilant about the problem of data in community-oriented application and take special care to take steps
to improve and ensure that the analyses are based on the highest quality data possible.

However, there are a few challenges in taking this practice into account. Data formats and available information
could be inconsistent across different sources, which makes the data aggregation burdensome. Also, unique norms
and affordances of different platforms have affected the data quality and inconsistency. While data disambiguation
techniques in some application domains have been studied extensively, data disambiguation practices in community-
based problem-solving are under-developed. For example, a recent work on event recommender systems disambiguated
local event data by using naïve text matching for event titles, and assumed that all duplicate events were detected in
the data cleaning pipeline [16]. While the performance of data disambiguation was not a main focus of this study, the
unknown performance of the text matching for detecting duplicate data makes it hard to assess the final results.

As the first step to shed light on the importance of such data practices, this paper aims to explore the characteristics
of community-driven data across different platforms. We disambiguate 20-months local event datasets, one of the
widely-used community data, from three different event-based social networks (EBSNs) to showcase what the web-based
community data looks like across different platforms. By training machine learning (ML) models in different spatio-
temporal contexts, we first provide a benchmark of data disambiguation techniques. Based on the data disambiguation
results, we show how much event data is fragmented across platforms in different cities and times. Finally, we discuss
future directions on research practices that can help increase the accountability of community-based data analytic work.
As the benchmarks and the data disambiguation results show varying performances in different contexts, community-
based data science work can benefit from this study by considering data characteristics that pertain to disambiguation
techniques, spatio-temporal contexts, and platforms.

2 DATA DISAMBIGUATION AND COMMUNITY-BASED RESEARCH

There is a large body of research on data disambiguation [6, 7, 13, 20, 28]. Named entity disambiguation aims to identify
people or entities with same names that are found in various platforms such as Wikipedia, ResearchGate, Twitter, and
closed domain knowledge bases (e.g., biomedicine, enterprise) [1, 2, 6, 7, 13, 17]. Techniques used to disambiguate the
data include supervised learning by modeling the task as a 2-bin classification problem [2, 10], unsupervised learning
to cluster all the data that refer to the same entity [12, 17, 22] and graph-based models to disambiguate the data using
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the network features [29]. These studies make use of the content information and biographical features as the input to
the disambiguation models.

However, only a few of them used spatio-temporal features in the data disambiguation processes [20], because the
contexts of the disambiguation work have rarely focused on community-based data. Although [8] built a convolutional
neural tensor network to extract latent features from raw location data (i.e., longitude and latitude) for entities in EBSNs,
for example, the model were used only for classifying group and user entities. Rather, community-based research
has largely focused on community dynamics themselves, assuming the data from a single data source reasonably
represents the dynamics. It is partly because the emergence of location-based social media such as Foursquare invoked
the increased amount of geo-tagged data on the internet, which has allowed researchers to study and predict community
characteristics at scale [9, 23]. For example, natural language processing and machine learning methods were developed
to predict economic development using geo-tagged texts from Wikipedia articles [24]. [5] introduced a clustering-based
method to understand city’s dynamic based on Foursquare data. Similarly, unsupervised machine learning techniques
were developed to analyze city logistics using Twitter data [26]. [19] used geo-tagged Twitter data to estimate local
commuting patterns. While these methods are novel, they used data from a single data source as with many other
community-based research, suggesting the need for further exploring how those community-based data looks when it
comes to multiple data sources.

Overall, the facts that (1) disambiguation techniques have been developed largely outside of the community-based
data contexts and (2) community-based research have largely focused on the community dynamics and models rather
than the sources of data show the gaps between the literature: the distribution of community-based data across different
platforms and their disambiguation performances still need further exploration. Although the FAccT community already
acknowledges the importance of this kind of issue and has developed the meaning of data representativeness extensively
(e.g., [4]), the fragmentation of community-based data in problem-solving practices is still at its infant stage, making
it difficult to further discussing nuanced FAccT issues. This motivate us to provide baseline benchmarks at the data
level first, as a means to provide a basis for researchers who focus on the nuances and complications embedded in the
community-based data.

To assess the effectiveness of existing disambiguation techniques on community data and to understand the charac-
teristics of community-based data, we ask the following questions:

• RQ1: How does the baseline disambiguation performances look?
• RQ2: How does the disambiguation performance changes when training the models across different times, spaces,
and data sources?

• RQ3: How much is the local event data fragmented across different sources and over time?

While RQ1 and RQ2 are for assessing the performance of ML-based disambiguation techniques, RQ3 is for providing
the results of the data disambiguation work, which scales up the previous work on the event data fragmentation work
[18]. Based on the answers to these questions, we discuss the implications for accountability issues in community-based
research.

3 APPROACH

The purpose of event data disambiguation is to identify whether two or more local events identified from different
data sources are physically the same event or not. After being able to detect physically same events from different data
sources, it becomes possible to understand the distribution of community-based data.
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Table 1. The volumes of events in target cities and platforms.

Washington D.C. New York Austin
Meetup 102,567 166,536 51,432
Eventful 99,701 241,256 30,424
Yelp 2,452 7,301 1,733

3.1 Data Collection

Local event data was collected from January 2017 through August 2018 (20 months) for three U.S. cities: Washington
D.C., New York City (NY), and Austin (TX). These cities are selected based on the geographical contexts that present
variability in the locations, the enough volumes of available event data in multiple platforms, and the socio-cultural
variability. The data sources that we targeted are Meetup.com, Eventful.com, and Yelp.com. Each website provides
Application Program Interfaces (APIs) from which researchers and developers can collect various kinds of data available
on the platform. Custom Python and PHP scripts were used to collect this data over time. The number of events per
city is presented in Table 1.

3.2 Data Pre-processing

While each data source provides common attributes such as start time, event title, event description, venue address,
and ZIP code, there are some inconsistencies in attributes as well. For example, unlike Eventful and Yelp that provide
start time and end time, Meetup provides start time and duration to compute the end time of event. If duration is not
specified in a Meetup record, the API documentation states that the default duration of an event is automatically set to
three hours. Yelp and Eventful sometimes do not include end time as well. In this case, we set the end time to the end of
the day. In addition to the start/end time generation, UTC offset is also taken into account to make the times precise.
Because event data is from cities in different time zones, the offset information from the data was used to adjust all the
times to local times.

Event titles and descriptions were also processed. Because event titles and descriptions from multiple sources are in
different formats (e.g., the inclusion of HTML tags, special characters, and varying text lengths), it was necessary to
process them so to make the data consistent to some degree. For example, Yelp’s event description is automatically
cut off after certain amount of text length, which creates inconsistency with other event datasets. To minimize the
inconsistency, all the HTML tags and special characters were removed from event titles and descriptions. Stop words
were also removed from event descriptions to reduce the noise of textual data. Also, all the words in these fields were
changed to lower case and stemmed.

3.3 Feature Engineering

Because there are spatial, temporal, and textual information that could inform the similarity between two different
events, we generated pair-wise features for all the pairs of events from different sources. Based on these features, we
designed the data disambiguation problem as a 2-bin classification problem (i.e., match or non-match). If two events
are physically the same event, it is "match" and, if not, "non-match." We extracted various features that consisted of
semantic, temporal, and physical similarity indicators to enrich the limited information obtained from different sources.
The final list of the features is listed in Table 2.
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Table 2. Pair-wise features generated for machine learning models.

Feature Description
Start time difference The start time difference between two events in hours.
Time overlap hours The overlapping hours between the two events’ time periods.
Time overlap rate The extent to which two events’ time periods overlap given the total time period of

the two events.
𝑜𝑣𝑒𝑟𝑙𝑎𝑝_𝑟𝑎𝑡𝑒 =

𝑡𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛

Period with hours The event duration in hours.
Name similarity The Jaccard similarity between two events’ names.
Description similarity The Jaccard similarity between two events’ description.
Physical distance Physical distance between two events’ locations (km).
Geocoding type The lowest resolution of geocoding type between two events.

3.3.1 Temporal feature extraction. The start times in the events data are relatively accurate across different datasets,
compared to the end times. Although the availability of events’ end times are often inconsistent and unpredictable,
start time is one of the powerful predictors in identifying whether two different events are physically the same event or
not. Time overlap hours and overlap rates provide other useful information, especially for records that have end time
information.

3.3.2 Semantic feature extraction. Jaccard similarity is used for measuring the similarity based on event titles and
descriptions because it is known that Jaccard similarity outperforms other metrics in sparse document clustering tasks
[25]. When event descriptions are written in non-English languages (e.g., French speaking meetup), which can be
detected by using the googletrans library in Python, we translated them into English using the translation library.1

When event descriptions are empty in one of the event pair due to the removal of stop words or URLs, we statistically
imputed this feature using the average Jaccard similarity score of all the other pairs in that city.

3.3.3 Geospatial feature extraction. The physical distance between two event locations is also a useful indicator to
predict match/non-match. However, a complication in the geo-coordinates of the Meetup datasets is that some Meetup
records do not contain location information at all or partial addresses (e.g., no information about longitude/latitude but
only the physical address of their event locations available). In the meantime, the data quality of location information
in the Eventful and Yelp data is better than that of Meetup due to the nature of data curation. Through qualitative
examinations, we found that Yelp data has the highest quality in location information for events. There is no inconsistency
found between geo-coordinates and physical addresses in random samples of Yelp events. Although Eventful data had
some issues in the location data, similar to Meetup’s, Eventful data provides a useful attribute called geocoding type,
which indicates whether the geo-coordinates of the location is precise or not.

In the Eventful dataset, each event record is tagged with one of the geocoding types: place-level, zipcode-level, and
city-level. Place-level geocoding provides the precise geo-coordinates of an event; zipcode-level geocoding provides
the accuracy at the zip code level; and city-level geocoding indicates the city-level accuracy (i.e., not accurate). As a
result, it is possible to identify whether the event location information is precise or not by considering the geocoding
classifications in Eventful dataset. Moreover, the geocoding type attribute also makes it possible to complement the

1https://pypi.org/project/googletrans/
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errors in Meetup’s geo-coordinates, because there is no accuracy indicator for the location data and the number of
errors is not negligible. In this regard, Meetup’s location data was examined and improved through a series of data
processing. Particularly, each record of the Meetup location data was examined automatically using scripts and, if
necessary, was tagged with one of the geocoding schemes following those of Eventful. The automated feature extraction
process of the geo-coordinates and geocoding types is as follows.

Step 1: Making use of “venue repinned”:We observed that if the venue_repinned attribute of a Meetup event is
TRUE, meaning the event organizer manually picked a particular location on the map for the event, its geo-coordinates is
accurate; thus, the records with TRUE for the venue_repinned attribute were tagged “place-level” for the geocoding_type
attribute.

Step 2: Geocoding for unregistered venues: Then, the event venues were examined to see if there were any
anomalies. When the venue ID of a Meetup event venue_id is not available, it means this event does not make use of
the registered venue data from Meetup’s venue database; rather, the venue information is manually entered by the
organizer in the how_to_ find_us field or not available at all. If both venue_id and how_to_ find_us attributes were not
available for an event, this event was tagged with “city-level” and the center of the city was used for the geo-coordinates,
because venue information was not available at all.

If venue_id is not available but the how_to_find_us field exists, it is possible that this attribute contains one of the
following: physical address, geo-coordinates, a URL of further information, the email address of the organizer, or the
phone number of the organizer. Regular expressions were used to detect the form of the information in this attribute,
and location information was extracted from the how_to_ find_us field when relevant. For example, if the pattern
matched longitude/latitude, the value was extracted and copied to the geo-coordinates attributes; then, this event was
tagged “place-level” for the geocoding_type attribute. If the pattern matched email address or URL, these records were
ignored from the processing.

If any of the pre-defined patterns were not relevant to the how_to_find_us field, the text was assumed as a physical
address and geocoded using the Google Maps Geocoding API. When the Geocoding API returned an error or null value,
the event record was tagged with “city-level” for the geocoding_type attribute. Also, when the geo-coordinates returned
from the API was more than 25 miles from the city center, the record was tagged with “city-level,” because it was highly
possible that this geocoding value was wrong (mostly because the text in the how_to_find_us field does not correctly
present the physical address).2

Step 3: Geocoding for registered online venues and TBDs: It is possible that registered venues on Meetup are
actually not physical locations but online addresses, especially for the events that happen through web interfaces. Also,
some venue addresses show “TBD” and provide a zip code- or city-level location only. Regular expressions were used to
detect online events. These events are tagged with “city-level” for geocoding_type. If place-level location data is not
available or tagged “TBD,” other location-related fields such as city and zipcode attributes were examined to check the
granularity of the location information. If venue address did not exist, the finest resolution of the location information
was geocoded using Google Geocoding API and tagged accordingly. For example, if a record has zipcode but does not
have a physical address, it is geocoded using the center of the zip code region and tagged with “zipcode-level” for the
geocoding_type attribute.

Step 4: Geocoding for registered venues with no geo-coordinates: There are registered venues that contain
physical addresses but without geo-coordinates. In this case, the physical address was reverse geocoded using the

2When we collected Meetup data, all the data that is located within a 25-mile radius from the city center was the target. This justifies 25 miles as the
threshold to detect geocoding errors.
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Google Geocoding API. Sometimes, a physical address does not provide the street-level address; in such cases, similar to
Step 3, it was geocoded based on the finest granularity of location available in the data. For a sanity check, the distance
between the geo-coordinates from API and the center of the city was calculated for each record. If this distance was
longer than 25 miles, the geocoding result was assumed to be wrong, maybe due to incomplete address information,
and tagged “city-level.” Depending on the precision of the geocoding, each record was tagged with one of the three
geocoding classifications.

3.4 Ground-truth Generation

After generating and engineering features, pairs with no overlap in their time periods (i.e., time_overlap_hours = 0)
were removed from the pair dataset because there was no possibility that they were the same event. Then, the stratified
sampling method was used to sample 1,800 pairs of events from the dataset randomly while balancing the number of
events based on distance, similarity, and topics. To generate the ground-truth data, we manually compared each pair of
events in the sample dataset by visiting the corresponding event’s web page to check whether each pair was physically
the same event.

Initially, the match/non-match was coded in two ways: the conservative coding and flexible codings. The conservative
coding assesses the match/non-match of two events based on their physical location and organizer; in the meantime,
the flexible coding assesses only their relations to a physical event (e.g., Science March by two different groups are
regarded as “match” in flexible coding, but “non-match” in conservative coding).

Through qualitative examinations and ML performance tests, the flexible codings were decided as the main object
variable, because it makes more sense to focus on physical events rather than people who create online events and, on a
more practical level, flexible codings yield a better consistency in the ML tests.

3.5 Machine Learning Benchmarks

3.5.1 ML Models. With the manual coding results as the ground-truth data, we modeled the disambiguation of event
data as the binary classification task. We used Decision Tree, Random Forests, and Support Vector Machine (SVM) to
identify “match/non-match” of the event pairs. Features that consist of semantic, temporal, and physical similarity
indicators were used to train the models. Grid search was used for tuning model parameters. Specifically, the minimum
number of samples required to split an internal node for tree-based models was 4, and the Radial basis function was
used for the kernel function of SVM. We compared the performance of our models with naive textual matching and
other models that involved name similarity comparison. The performances were evaluated by precision, recall, and F1
scores. Moreover, the overall performance was evaluated by 100 independent validations, in which random seeds were
generated in each iteration.

3.5.2 Baseline Performance Measures. We compared the ML-based methods to the following baseline methods: (1) ran-
dom guess: generate predictions uniformly at random. (2) text matching of event name: generate predictions by pure
text matching of event name (used in [16]. Specifically, for each pair of event, if one of the event name is a subset of
the other, the prediction is match. (3) event name Jaccard similarity: use Jaccard similarity of event name as feature to
train ML models and generate predictions. To ensure the robustness of each model, the performance was measured
based on the average F1 score of 100 independent predictions. In addition, different combinations of training data were
generated based on the time, locations, and datasets to validate that our ML models provide stable performances across
time, locations, and datasets.
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4 RESULTS

4.1 RQ1: General ML Performance

The performances of ML models are measured using F1 scores based on the average of 100 test results. For each test of
the models, the proportions of the training set range from 20% to 90% to show the robustness of the model. Figure 1
shows the average F1 scores of ML models within the 1800 pairs of events. Table 3 shows the average precision, recall
and F1 score of each method. Our ML models that use temporal, spacial and textual features to disambiguate event data
have better performance than other baseline methods do. Specifically, Random Forests presents the best performance in
its average F1 score, 0.956, when 80% of the data are used for training. SVM and Decision Tree show good performances
as well, but F1 scores are 0.937 and 0.917, respectively. Figure 2 shows the average F1 scores versus number of features
used over 100 independent predictions. Random Forests has the highest average F1 score when all of the features are
included. In addition to F1 score, recall is also important when the number of matches is very small. As shown in Table
3, Random Forests that is trained with various features has the highest average recall value of 0.978, while pure textual
matching of event title only has the average recall value of 0.753. This suggests that including temporal and spacial
features can help find true matches and increase the recall in the given dataset.

(a) Random Forests. (b) SVM. (c) Decision Tree.

Fig. 1. F1 scores of different machine learning models. Each score is the average of 100 independent predictions. Feature-based ML,
name similarity-based ML, and name textual matching are represented by solid line, dashed line, and dotted line, respectively

(a) Random Forests (b) SVM (c) Decision Tree

Fig. 2. F1 scores versus number of features. Each point is the average F1 score of 100 independent predictions. The order of features is
name similarity, description similarity,time overlap rate, time overlap hours, period hours,start time difference, geocoding type, and
physical distance.
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Table 3. Average precisions, recalls and F1 scores of 100 independent predictions using 80% of data for training

Precision Recall F1 score
Random guess 0.133 0.495 0.209

Textual matching of event name 0.940 0.753 0.835
RF (name similarity) 0.902 0.929 0.914
SVM (name similarity) 0.900 0.956 0.927
DT (name similarity) 0.901 0.902 0.900

RF 0.935 0.978 0.956
SVM 0.907 0.970 0.937
DT 0.930 0.906 0.917

4.2 RQ2: Model Robustness across Times, Cities, and Data Sources

4.2.1 Cross-time Validation. To show the stability of models across time, we divide the data into training and testing
sets by months. We use January 2017’s and July 2017’s data to train the ML models, respectively, and evaluate the
performances of the models with the remaining data. Figure 3 shows that the ML-based models still have F1 scores
higher than 0.90 when the training set only includes data from a specific month. The average precision, recall and F1
score of each model are shown in Table 4.

Fig. 3. F1 scores of cross-time validation

4.2.2 Cross-city Validation. Similar to the cross-time validation, the data is divided into training and testing sets based
on the locations for cross-city validation. We use data from Washington D.C., New York and Austin to train the ML
models respectively, and evaluate the performance of models with the remaining data. The performance of each ML
model that is trained with different cities’ data is shown in Figure 4. Table 5 shows that including various features could
help improve the performance of Random Forests and SVM.

4.2.3 Cross-dataset Validation. Finally, event-pair data from Eventful & Meetup, Eventful & Yelp and Meetup & Yelp are
used to train ML models, respectively, for cross-dataset validation. The performances of ML models that use different
datasets for training are shown in Figure 5. Unlike other results of validations, Random Forests and Decision Tree do
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Table 4. Average precisions, recalls and F1 scores of cross-time validation

Precision Recall F1 score
Random guess 0.144 0.507 0.224

Textual matching of event name 0.534 0.434 0.479
RF (name similarity) 0.891 0.955 0.922
SVM (name similarity) 0.897 0.953 0.924
DT (name similarity) 0.897 0.862 0.878

RF 0.901 0.951 0.929
SVM 0.899 0.969 0.932
DT 0.891 0.930 0.910

(a) Random Forests (b) SVM (c) Decision Tree

Fig. 4. F1 scores of cross-city validation

Table 5. Average precisions, recalls and F1 scores of cross-city validation

Precision Recall F1 score
Random guess 0.132 0.521 0.210

Textual matching of event name 0.941 0.756 0.838
RF (name similarity) 0.887 0.915 0.899
SVM (name similarity) 0.900 0.957 0.927
DT (name similarity) 0.888 0.914 0.899

RF 0.912 0.948 0.928
SVM 0.909 0.951 0.928
DT 0.908 0.868 0.885

not perform well when training set only includes Eventful & Meetup event-pair data and excludes Yelp data. Excluding
Yelp data in the training set might lead to lower performance, because there is a limitation of Yelp’s API, which do not
provide complete access to event description of each event. Table 6 shows the average precision, recall, and F1 score of
cross-dataset validation, where models that are trained with name similarity feature have higher average values of F1
score.
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(a) Random Forests (b) SVM (c) Decision Tree

Fig. 5. F1 scores of cross-dataset validation

Table 6. Average precisions, recalls and F1 scores of cross-dataset validation

Precision Recall F1 score
Random guess 0.132 0.499 0.208

Textual matching of event name 0.944 0.750 0.834
RF (name similarity) 0.892 0.890 0.887

SVM (name similarity) 0.906 0.946 0.924
DT (name similarity) 0.895 0.886 0.886

RF 0.919 0.828 0.864
SVM 0.912 0.903 0.907
DT 0.907 0.784 0.835

4.3 RQ3: Data fragmentation rates across different sources and time

We use the following formula to show the duplication rate in a city. Based on the number of organized events in
each information source (i.e., 𝑁𝑚𝑒𝑒𝑡𝑢𝑝 , 𝑁𝑦𝑒𝑙𝑝 , 𝑁𝑒𝑣𝑒𝑛𝑡 𝑓 𝑢𝑙 ), their pair-wise duplicates (i.e., 𝑁𝑚∩𝑦, 𝑁𝑚∩𝑒𝑎𝑛𝑑𝑁𝑒∩𝑦 ) and
the number of overlapping events across all the three sources (i.e., 𝑁𝑚∩𝑦∩𝑒 ), the duplication rate can be calculated as
follows:

𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝐷

𝑁
, (1)

where
𝐷 = 𝑁𝑚∩𝑦 + 𝑁𝑚∩𝑒 + 𝑁𝑒∩𝑦 − 2 × 𝑁𝑚∩𝑦∩𝑒 (2)

and

𝑁 = 𝑁𝑚𝑒𝑒𝑡𝑢𝑝 + 𝑁𝑦𝑒𝑙𝑝 + 𝑁𝑒𝑣𝑒𝑛𝑡 𝑓 𝑢𝑙 − 𝑁𝑚∩𝑦 − 𝑁𝑚∩𝑒 − 𝑁𝑒∩𝑦 + 𝑁𝑚∩𝑦∩𝑒 (3)

Figure 6 shows that the duplication rates of local event data keep increasing over time based on one data source’s
increasing data curation practices (the volume of Eventful data has been increasing continuously during the data
collection period). Even though, the duplication rates are very low at around 2% if we assume these three sources cover
a enough breadth of the available local events. Given the fact that the three data sources that we use reflect only part of
the entire local event data available in the cities [18], there needs to be further studies that examine more data sources.
The results suggest that local event data is highly fragmented across different data sources, and future community-based
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Fig. 6. Duplication rate

applications will need to take this issue seriously to ensure the data accountability in community-based data science
works.

5 DISCUSSION AND CONCLUSION

In recent data science applications that focus on community dynamics and data disambiguation, it was unclear (1)
whether the data represents community dynamics and (2) what the data characteristics are when it comes to multiple
data sources. As the results suggest, data disambiguation performances vary depending on how to divide train and
test sets across times, cities, and platforms. Particularly, data pre-processing with an insufficient understanding of the
data fragmentation issues in community-based data science work could lead to a serious accountability issue from a
scientific rigor and ethics perspective. These inferences and results provide useful implications for community-based
data.

First, it is obvious that focusing on one data source could target only a small portion of available data in the
community, as shown in the results of RQ3. Community-based data science work needs to take the phenomenon of data
fragmentation into account seriously as each data source often has a high level of platform-specific biases. Although it
would be difficult to eliminate sampling bias entirely from data collected from online platforms, using multiple data
sources will help alleviate these potential biases.

Second, the stability of data disambiguation techniques differs by training sets for ML models. Depending on the
data quality and inconsistency, the stability of performance varies. When using a trainset from two data sources to
disambiguate data from another two platforms, the prediction power was unstable. Particularly, Eventful data as part of
the training set leads to decreased performance and increased instability. One possible reason is that the training set
does not include data from Yelp, where event descriptions are not complete due to the limitation of Yelp API. Because

12



Evaluating Data Fragmentation across Event-based Social Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

of this, we checked the feature importance and visualized the decision tree using Scikit-Learn library 3, and found that
the tree split the data based on the description similarity at the first level while using Eventful and Meetup pairs for
training. When training ML models for event data disambiguation, it is recommended to combine both high and low
quality datasets, if unavoidable. Also, data scientists can conduct sensitivity tests across times, spaces, and platforms
for train and test sets to ensure the robustness of the data disambiguation performance. Finally, generating pair-wise
features that consisted of semantic, temporal, and physical similarity indicators is necessary to disambiguate event
data from different EBSN platforms due to the inconsistencies of data format and available information across different
sources.

Third, the performances across geospatial and temporal ranges was relatively stable in the target EBSNs.
Surprisingly, Table 4 shows that in the cross-city validation, textual matching of event name has lower recall value

compare with random guess. Naïve textual matching of event name does not provide good results probably because
event names are usually short, which might increase the number of false positive predictions and thus a lower recall
value. Especially for those events that are related to festivals or holiday seasons tend to have similar names and time
periods. For instance, there were many New Year’s Eve parties in January, while most of them were actually different
events but with similar event names. As a result, data scientists need to be cautious when they aim to disambiguate
events using data within a limited time. We have shown that our models which include various kinds of features are
robust across times and are able to disambiguate events using data within a limited time for training.

Also, it was possible to disambiguate events in other cities without including large amount of data from different
cities for training. Although Table 5 shows that SVM (training with event name similarity) provides a good performance
as well, using event name as the only feature might increase the number of false positive predictions as discussed above
as well as the risk of under-fitting. Therefore, including various features could help improve the robustness of the
model.

Beyond data scientists, this is also a call for research on data fragmentation issues for FAccT scholars. Although FAccT
research has uncovered important dimensions in the FAccT issues, the data fragmentation issues in community-based
data have been relatively under-studied. The contexts of community-based data are unique from a FAccT perspective,
because people’s affordances of platforms, cultural practices, and temporal patterns are different even on the same
platform. This presents a high level of nuances and complexities embedded in the data as well as in the problem itself.
We believe this study is the initial effort to open discussions about this problem space. We call for researchers’ attention
to the data selection and disambiguation processes, as well as a broader spectrum of data fragmentation issues, when
designing strategies for community-based problem solving.
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